SCOUT: A Case-Based Reasoning Agent for Playing Race for the Galaxy

نویسندگان

  • Michael Woolford
  • Ian Watson
چکیده

Game AI is a well-established area of research. Classic strategy board games such as Chess and Go have been the subject of AI research for several decades, and more recently modern computer games have come to be seen as a valuable testbed for AI methods and technologies. Modern board games, in particular those known as German-Style Board Games or Eurogames, are an interesting mid-point between these fields in terms of domain complexity, but AI research in this area is more sparse. This dissertation discusses the design, development and performance of a game-playing agent which uses the Case-Based Reasoning methodology as a means to reason and make decisions about game states in the Eurogame Race For The Galaxy. We have named this system SCOUT. The purpose of this research is to explore the possibilities and limitations of Case-Based Reasoning within the domain of Race For The Galaxy and Eurogames in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING

Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...

متن کامل

A Case-Based Reasoning Approach to Imitating RoboCup Players

We describe an effort to train a RoboCup soccer-playing agent playing in the Simulation League using casebased reasoning. The agent learns (builds a case base) by observing the behaviour of existing players and determining the spatial configuration of the objects the existing players pay attention to. The agent can then use the case base to determine what actions it should perform given similar...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Dynamic Modeling and Controller Design of Distribution Static Compensator in a Microgrid Based on Combination of Fuzzy Set and Galaxy-based Search Algorithm

This paper  presents a nonlinear controller for a Distribution Static Compensator (DSTATCOM) of a microgrid incorporating the Distributed Generation (DG) units. The nonlinear control has been designed based on partial feedback linearization theory and Proportional-Integral-Derivative (PID) controllers try to adjust the voltage and trace the output. This paper has proposed a combination of a fuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017